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Global Existence in L 1 for the Modified 
Nonlinear Enskog Equation in N3 
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A global existence theorem with large initial data in L a is given for the modified 
Enskog equation in ~3. The method, which is based on the existence of a 
Liapunov functional (analog of the H-Boltzmann theorem), utilizes a weak 
compactness argument in L t in a similar way to the DiPerna-Lions proof for 
the Boltzmann equation. The existence theorem is obtained under certain condi- 
tion on the behavior of the geometric factor Y. The condition on Y amounts to 
the fact that the L ~ norm of the collision term grows linearly when the local 
density tends to infinity. 
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1. I N T R O D U C T I O N  

In this pape r  I out l ine the p roof  of a g lobal  existence theorem for the 
modif ied  Enskog  equat ion.  The  p r o o f  utilizes ideas exploi ted  recently by 
D i P e r n a  and Lions  to s tudy existence of so lu t ions  to the Bol tzmann  equa-  
tion. The D i P e r n a - L i o n s  work  (1~ is based on a new averaging l emma for 
f i rs t -order  hyperbo l i c  differential  ope ra to r s  by Golse  et al. ~H~ and has had  
a large impac t  on r igorous  kinetic  theory.  Because of the impor t ance  of  
these ideas, and  because paral le l  a rguments  are to be used in the current  
work  on the Enskog  equat ion ,  I present  in the next sect ion a careful sum- 
mary  of this averaging me thod  app l ied  to the Bol tzmann  equat ion ,  and  
brief comment s  on its value and its weaknesses.  In Section 3, I re turn  to 
the Enskog  equat ion ,  and  derive new a priori  es t imat ions  for the modif ied  
equat ion.  Final ly ,  in Sect ion 4 I indicate  that  these es t imat ions  enable  the 
existence theory  to be analyzed  in the context  of the averaging method.  
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The Enskog equation, derived in 1921 by Enskog (~2) to take account 
explicitly of the finite diameter of molecules, is a successful kinetic model 
of a dense gas consisting of hard spheres. A modified Enskog equation can 
be derived from the BBGKY hierarchy by computing the reduced 
N-particle distribution function from a special grand canonical formalism 
and arriving at a closure relation for the two-particle distribution function 
(see Resibois (1'2/and the bibliography in ref. 3). The result is 

~+v 0f 
~xx = E( f )  (1.1) 

where f ( t ,  x, v) is the one-particle distribution function with t >/0, x, v ~ R 3, 
and the collision operator E( f )  defined by E ( f ) =  E + ( f ) - E - ( f )  with 

E+(t )=a2 f f  R Y(n(t,x),n(t,x-ae)) f(t,x,v') 
3 x S 2 

x f ( t ,  x - ae ,  w')( e, v - c o )  de dw 

E - ( f ) = a 2 f f  R Y(n(t,x),n(t,x+ae))f(t,x,v) 
3• 

x f ( t ,  x + at, w)(e, v -  w)  de dw 

(1.2a) 

Here, a denotes the hard sphere diameter, ( . , . )  is the inner product in 
R 3, e e S 2 = { ~  eR3:L~I=I,  ( v - w , ~ ) > ~ 0 } ,  and the velocities after the 
collision, v', w', are given by 

v'=v-e(~,v-w),  w'=w+e(e,v-w) (1.3) 

The function n(t, x) = ~R 3 f(t ,  x, v) dv is the local density of the gas, and the 
geometric factor Y is a function of the local density at x and x_+ ae. One 
notes that in the original Enskog equation Y depends only on the density 
at the point of contact, i.e., at the point x + �89 

An essential differences between the modified equation and the 
original equation is that for the modified equation there is an analog of the 
Boltzmann H-theorem. Indeed, Resibois showed (a) that H(t) given by 

It(t) = ~ i drN p~(t)log[N! pN(t)] 
N = O  

(1.4) 

is nonincreasing in t~>0, where PN(t) is the approximate N-particle 
distribution function, ~2) and that (at least formally) the modified Enskog 
equation drives the gas confined in a box with periodic boundary condi- 
tions toward the absolute Maxwellian. 

(1.2b) 
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The function H(t) given in (1.4) can be rewritten in the form (ref. 2, 
p. 600) 

H(t) = fJ" f(t,  x, v) log f(t,  x, v) dv dx + H~(t) (1.5) 

where f(t,  x, v) is the solution to (1.1), and the potential part H~(t) is given 
in terms of Resibois' grand canonical formalism, but, unfortunately, not 
explicitly in terms o f f ( t ,  x, v) and Y. I show in Section 2 that this potential 
difficulty in utilizing the H-function can be overcome. 

I end this section with a brief review of known existence theorems for 
the original or modified Enskog equation (see ref. 3 for a more detailed 
review). The first local in time existence theorem was obtained by 
Lachowicz34~ A global in time existence theorem was obtained by Toscani 
and Bellomo ~5) in the case of a perturbation of the vacuum. I showed (6) 
that the solution obtained in ref. 5 is actually a classical solution to (1.1) 
if the initial datum is smooth. Furthermore, the asymptotic behavior of 
solutions was obtained in ref. 6. All of the above results deal with the 
original Enskog equation, but with easy modifications can be extended to 
the modified Enskog equation. 

The quoted results fall in either of two categories: small initial data or 
local in time existence results. For large initial data, Cercignani (7) obtained 
global in time L 1 solutions in the case of one space dimension and Y_= 1. 
Arkeryd t~) extended Cercignani's result to two space dimensions using a 
weak compactness argument in L t, however, with the range of integration 
with respect to e extended to the whole sphere S 2, together with the 
assumption that Y= 1. It is worth noting that this alteration in the range 
of integration has a significant effect on the dynamics of the Enskog equa- 
tion. In fact, the original Enskog equation and the modified equation, with 
integration over S 2, distinguish between forward and backward (time- 
reversed) collisions, while the Boltzmann equation and the alteration 
above, with integration over S 2, are symmetric under forward and back- 
ward collisions. Recently, Arkeryd ~ has obtained global existence for 
Y-= 1 and the assumption of bounded velocities. More precisely, he 
replaced (~, v -  w) in (1.2) by ~ ,  v -  w) W/, where Wj = 1 if v2+ w2~< 4 i 
and Wj = 0 otherwise. 

In this paper, the proof of a global existence theorem is based on the 
fact that one can find a Liapunov functional to (1.1) if Y(., .)  is a sym- 
metric function of two variables. To utilize the Liapunov functional further, 
we need an additional assumption on the behavior of Y when n(t, x) tends 
to infinity [see (3.9)]. This condition implies that the L 1 norm of the colli- 
sion term E(f)  grows linearly when n(t, x) tends to infinity. We want to 
point out that in one space dimension condition (3.9) is superfluous, and 
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the only additional assumption that is needed (except, of course, for 
the symmetry) is the boundedness of Y. This observation generalizes 
Cercignani's resultS7); indeed, he assumed that Y - 1 ,  which is symmetric 
and bounded. 

. SKETCH OF THE DIPERNA-LIONS RESULT 

Consider the Cauchy problem for the Boltzmann equation 

of_ 
~ t + V ~ x - Q ( f ) ,  f ( O , x , v ) = f o ( x , v )  (2.1) 

where x e R 3, v E R 3, and Q ( f )  is the Boltzmann collision operator. Q ( f )  
can be written in the form Q ( f ) =  Q + ( f ) -  Q - ( f ) ,  where 

Q+ ( f )  = f f  R3• 2 f ( t ,  x, v') f ( t ,  x, w') B(O, v -  w) de dw 

Q -  ( f )  = f f  R3• s 2. f ( t ,  x, v) f ( t ,  x, w) B(O, v - w) de dw 

Here v' and w' are given by Eq. (1.3). The angle 0~ [0, x/2] is defined by 
cos 0 = ( v -  w, e ) / l v -  wl, and B(O, v -  w) is the scattering kernel with 
the usual angular cutoff. For inverse power potentials, ~ ( r ) = r  -s, 
B ( O , v - w ) = b ( O ) l v - w ]  (s-4)/" with s > 2 .  For the hard spheres model, 
B ( O , v - w ) = l v - w l  c o s 0 =  ( v - w , e ) .  The DiPerna-Lions result to be 
outlined here will cover all soft and hard potentials; in fact, it will work for 
all B(O, v - w) = b(O)Iv - wl; with - 3  < 2 < 2 and Ss2+ b(O) de < oc. We say 

that f is a mild solution to (2.1) if Q•  x, v) ~LI(0, T) a.e. in (v, x ) e  
R 3 x R 3 and 

f # ( t , x , v ) - f # ( s , x , v ) =  Q ( f ) #  ( z , x , v ) d z  

for any 0 < s < t ~< T with f #  (t, x, v) = f ( t ,  x + tv, v). 
The Boltzmann collision operator Q possesses the following two 

fundamental properties. For ~, e C(R 3 x R 3) and f s  Co(R 3 x R 3) we have 

tkQ(f)  dv = eretll [~(x, v) + ~9(x, w) - 0(x, v') - O(x, w')] 
g R 3 ddd R 3 x R 3 • 32+ 

x [ f (x ,  v ' ) f ( x ,  w') - - f ( x ,  v) f ( x ,  w)] B(O, v - w) de dw dv 

(2.2) 
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and for 0 ~<fe Co(R 3 x R 3) we have 

fR Q(f ) logf  dv <~0 (2.3) 

As a result of (2.2) and (2.3) we may conclude that i f f ( t ,  x, v) is a smooth 
and nonnegative solution to (2.1) with a nonnegative initial value fo 
satisfying 

f f R  (l+v2+x2+ll~176176176176176 (2.4) 
3xR3 

then 

sup ffRs• ( l+v2+x2+jl~ (2.5) 
O <~ t <~ T 

where Cr  depends only on T and Co. 
Now, let Q, denote a suitable approximation of Q (defined later) for 

which (2.2) and (2.3) are satisfied and such that the initial value problem 

OJ; + v Ofn ~--/ 7x = Q~(fn), L(o, x, v)=fo(x, v) (2.6) 

has a nonnegative solution on [0, T], T>0 .  Then (2.5) and the Dunford- 
Pettis theorem (13/ imply that {fn} is relatively weakly compact in 
LI((0, T) x R 3 x R-~). Without loss of generality we may assume that f ,  - ~ f  
weakly in L 1, where 0 ~<f~ L 1. The idea, of course, is to find Q, for which 
(2.6) can be solved for each n ~> 1 and such that f satisfies the Boltzmann 
equation (2.1) in some specified sense. 

One should point out that the solution of a sequence of approximate 
initial value problems and the convergence of the approximate solutions is 
a stage which has been reached by many authors. Arkeryd t~4) solved (2.6) 
for some truncated version of Q. However, he was unable to show that the 
weak limit f of a sequence fn satisfies the Boltzmann equation. The authors 
in refs. 15 and 16 replaced v O/Sx by its finite difference approximation and 
also solved the simplified problem. As in ref. 14, they were unable to pas 
with the limit in the Eq. (2.1). A stumbling block in these attempts was 
that Q is not weakly continuous in LI(R3• R3), and, in fact, is even dif- 
ficult to define in a reasonable way in Ll(R3 • R3). However, Arkeryd ~7/ 
did use a weak compactness argument for the space-independent problem. 
In this case the collision operator is weakly sequentially continuous, i.e., 
Q(fn)-~ Q(f) weakly in LI(R 3) if f n - ~ f  weakly in LI(R3), and therefore 
f satisfies the homogeneous Boltzmann equation. 
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The success of DiPerna and Lions relies on two new arguments 
applied to the Boltzmann equation. The first deals with the notion of a 
so-called renormalized solution. We say that f s  C([0, T] x L~+(R 3 • 
is a renormalized solution to (2.1) if 

1 
1 + f  Q• T) xBRXBR) 

for any R > 0 and 

~ l o g ( l + f ) + v O t  l og ( l+ f )=~- - fQ( f )  (2.7) 

in Y((0,  oo)•  DiPerna and Lions showed that f is a renor- 
malized solution to (2.1) if and only if it is a mild solution and 
Q• + f)eL~o o. 

The second concept is a new compactness argument due to Golse 
et al., (H) which applies to general transport equations. Suppose that 
fn~Ll(O, T) x R  3 x R  3) and g.~L~o~((O, T ) x R  3 •  3) satisfy 

T~f. aeZ + V ~ x = g  ~ (2.8) 

in ~'((0,  T)xR 3 • If we know that for each compact set K of 
(0, T) x R 3 x R 3 the sequences {f,} and {gn} are relatively weakly compact 
in L~((0, T)x R3x R 3) and L~(K), respectively, then the averaging lemma 
asserts that for all ~oeL~((O,T)xR3xR 3) the set {~R3~of,,dv}= 
{~R3 qoTvlgn dr} is relatively compact in LI((0, T)• R3). In other words, 
the velocity-averaged operator T v ~ behaves in a similar way to the inverse 
of an elliptic operator. We recall that T[  ~ may be singular only on the set 
of the characteristic direction. Velocity averaging compensates for the lack 
of regularity in the characteristic direction of the hyperbolic operator. 

In view of (2.7), in order to utilize the above compactness argument 
we need weak compactness of {Q(fn)/(1 + f , ) }  in LI((0, T) x R 3 x BR) for 
all R > 0 ,  where B e =  {v~R3: ]vl<~R}. Since the weak compactness of 
{Q f,/(1 +f~)} follows in a relatively simple way, we need to show the 
weak compactness of {Q+f,/(1 +fn)}. This is possible due to the following 
new estimation of the gain term Q+ provided by DiPerna and Lions: 

1 + _< Q f~..~MQ f~+;----;5,,e(f~) (2.9) 
l o g M  
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for all M >  1, where 

e(fn) , [ f . ( t ,  x, v ' ) f . ( t ,  x, ~")-f ,~(t ,  x, v)f,,(t, x, w)l 

, L ( t ,  x, v ' )L( t ,  x, w') 
x B(O, v - w) Jog . . . . . . .  de dw 

L( t ,  ~, v) L( t ,  ~, w) 

In view of (2.2) and (2.3), we have e(f,)>~O, and since we also have the 
entropy identity 

f~logf~dvdx+~ e(f~)dvdx=O (2.10) 
3xR3 3xR3 

we see that {e(fn)} is bounded in LI((0, T ) x R 3 x  R 3) uniformly in n>~ 1. 
We are now in a position to summarize the main points of the 

DiPerna Lions proof. We approximate Q by its truncated version 

1 
Q,,f~ 1 + (1 /n)~,~f .  ctv 

ffR3• [frt(X, ~)t) fn(X , Wt)--fn(X, D) frt(X , 1,42)] Bn(O, v--w)da dw 

where 

Bn(O, v - w) = [cos 2 0(1/n + cos 2 0) - l ]  x inf{ 1, ]v - wl 1 / n }  X B(O, D - -  W) 

if v2+ w2<~n, and 0 otherwise. For such Q~ the problem (2.6) can be 
solved uniquely on [0, T] for any T>0 .  Indeed, Q,, is Lipschitz in 
LI((0, T) • R 3 • R 3) with Lipschitz constant depending only on n. Further- 
more, f ,  is a smooth, nonnegative solution to (2.6). As before, (2.2) and 
(2.3) imply that, by passing to a subsequence if necessary, fn - o f  weakly in 
LI((0, T)x R3x R 3) and, by the averaging lemma, 

fR3qof, dv~;R3qofdv strongly in LI((0, T ) x R  3) (2.11) 

for all ~0 E L~ T) x R 3 x R3). 
Next, using (2.11), one may show that for each (p~L~((0, T)x 

R3• R 3) with compact support, 

fR3 Q(fn)(p dv--, fR3 Q(f)q~ dv (2.12) 
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in measure on (0, T)x BR. Properties (2.11) and (2.12) are enough to show 
that f is a mild solution to (2.1). 

The procedure for solving (2.1) may be analyzed as follows. The 
Boltzmann equation has naturally built into its structure the weak com- 
pactness argument [properties (2.2) and (2.3)]. The question is whether 
the weak limit of a sequence of solutions is again a solution. In spite of the 
fact that Q is not weakly continuous in L~(R3x R3), the answer to this 
question is affirmative. Indeed, the weak limit of a sequence of classical 
solutions is a renormalized, or equivalently, mild solution to (2.1). In other 
words, the set of renormalized solutions is closed in the weak topology of 
L~((0, T) • R 3 x R3). 

The DiPerna-Lions paper has had great impact in part because the 
methods are applicable to a variety of problems in kinetic theory, and also 
because it answers (affirmatively) for the first time the question of whether 
the full nonlinear Boltzmann equation has solutions, valid for all time, 
when the initial value is far from the equilibrium solution (the 
Maxwellian). This has been an open problem not just from a rigorous 
point of view. Since derivations of the Boltzmann equation lean--at  least 
implicity--on the assumption that the gas is not too far from its equi- 
librium configuration, there has not been even good physical intuition as 
to whether global solutions should exist for initial configurations arbitrarily 
far from equilibrium. 

On the other hand, weak compactness arguments necessarily suffer 
from a substantial drawback. No information is offered as to the unique- 
ness of the derived solution. And, indeed, to date, no ideas have been 
offered to decide if the sequence {f,} obtained by DiPerna and Lions has 
a unique limit point, and, if so, if the limit is the unique solution of the 
Boltzmann equation. 

3. BASIC IDENTIT IES A N D  A PRIORI E S T I M A T I O N S  
FOR THE M O D I F I E D  ENSKOG E Q U A T I O N  

In order to apply averaging techniques to the study of the modified 
Enskog equation, it is first necessary to obtain a number of a priori 
estimates for its solution. 

First, let us note that the factor Y(n(t, x), n(t, x - a e ) ) ,  which in 
general is a functional of the local density at x and x - a ~ ,  arises from the 
Resibois' formalism as a symmetric functional of n(t, x)  and n(t, x - ae). In 
fact, this property is crucial in the derivation of the H-theorem, and is 
necessary, in any case, to obtain conservation laws. We shall assume this 
symmetry throughout, namely, y ( v , ~ ) =  Y(cr, z), a,r>~0. The first 
property of E ( f )  we indicate is an analog of corresponding identities 
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for the Boltzmann collision operator. For OeC:~(R 3 x R  3) and 
f e Co(R 3 • R3), 

J JR3 • R3 O(x, v) E ( f )  dv dx 

a2Iflf = 2  R~•215215 [~,(x ,v ' )+~,(x+ae,  w') 

--tp(x, v ) - -O(x  +ae, w)] x f (x ,  v) f ( x  +aa, w) Y(n(x), 

n(x + at)) (~, v -- w )  & dw dv dx (3.1) 

While Resibois must have been aware of this identity, it was never stated 
explicitly [see, however, the identities (35) and (37) in ref. 2, where ~, is 
replaced by log f ( x ,  v)]. 

For f a nonnegative solution to (1.1), and ignoring at this stage any 
integrability conditions, we define 

F ( t ) =  f ( t , x , v ) l o g f ( t , x , v ) d v d x -  I(s)ds (3.2) 
3xR3 

where 

la2jfff 
- f ( t ,  x + ae, w) Y(n(t, x), n(t, x + ae) ] 

x f ( t ,  x, v)(e, v -- w )  dE dw dv dx 

Now, multiplying (1.1) by 1+log  f and integrating 
we have 

I f ( t ,  x - ae, w) Y(n(t, x), n(t, x - ae)) 

over (x, v) e R 3 • R 3, 

dF 
ffR E ( f ) l o g f  d v d x - I ( t )  (3.3) 

dt 3 • R3 

Using the identities (35) and (37) of ref. 2 together with the inequality 
y(log y - log z)/> y - z for y, z > O, we obtain 

dF 
- -~<0  (3.4) 
dt 

The inequality (3.4) shows that F(t) is a Liapunov functional for (1.1). F(t) 
displays the irreversibility of the system governed by the modified Enskog 
equation. It also can be considered as the analog of the H-function for 
(1.1). Note that F i s  defined explicitly in terms o f f ( t ,  x, v) and Y, in con- 
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trast to the H-function (1.4) [or (1.5)] obtained by Resibois. (2) Further- 
more, in the dilute gas limit, when the modified Enskog equation becomes 
the Boltzmann equation, the function F(t) reduces to the Boltzmann 
H-function. 

In order to obtain a priori estimations on the solution f(t, x, v) to 
(1.1), let us assume throughout this section that f is a smooth nonnegative 
solution with initial value fo(x, v) satisfying 

f f R  (l+v2+x2+ll~176176176176176 (3.5) 
3xR3 

Our first a priori estimations are the following conservation laws, which 
follow from (3.1) with ~ = 1, v, v2: 

ffR~• R~ f(t, X, V) dv dx = ffR3 • R3 Jo(X, V) dv dx (3.6) 

f f  vf( t ,x ,v)dvdx=ff  R vfo(x,v)dvdx (3.7) 
R 3 x R 3 3 x R 3 

R 3 • R 3 R 3 x R 3 

So far the only property of Y employed has been the symmetry Y(z, tr)-- 
Y(~,z), z,a>,O. 

In order  to utilize (3.2) and (3.4) further, we need an additional 
assumption on Y: 

sup zY(z, a ) = M y <  oe (3.9) 
z,(r ~>0 

Now it is an easy exercise to show that (3.9) together with the symmetry 
of Y imply 

sup II(t)l<<,4rcaZMvlf (l+v~)fo(x,v)dvdx (3.10) 
O ~ t < ~  T R3xR3 

In view of (3.10), one immediately sees from (3.2) and (3.4) that 

sup if f log f dv dx 
O < ~ t < ~ T '  R 3xR3 

~ ff  fol~ +(l + T)4~a2Mr 
R 3 • R 3 

x f f  (l+v2)fo(x,v)dvdx (3.11) 
R3 • /~3 
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We further notice that in the case of one space dimension one can obtain 
estimation (3.10), and hence (3.11), without the assumption (3.9). Indeed, 
using the same technique as in the lemma of ref. 7, p. 216, one obtains [H ]2 

sup II(t)J<<.16rca[sup Y('c,o-)] (l+v2)fo(x, to)dvdx = C  1 
O<~t<~T v ,a~O 

(3.12) 

As before, (3.12) implies 

sup [[  f l o g f d v d x < < . j f  R f o l o g f o d v d x + ( l + T ) C l  (3.13) 
O ~ t ~  TOOR3• R 3 3xR3 

An important physical case when (3.9) holds is provided by Y with com- 
pact support, support { Y} c [0, nc] x [0, n,J. Since the diameter of the 
hard spheres is greater than zero, n c can be interpreted as "the density at 
which the spheres become strictly packed" (see ref. 7, p. 214). 

Another estimation can be obtained by multiplying (1.1) by ( x - t v )  2, 
integrating by parts over x E R 3, and using (3.1) along with the equality 

(x  - tv') 2 + (x  + at  - tw')  2 = (x  - tv) z + (x  + at - tw)  2 - 2 a t ( t ,  v - w )  

for x, v, w e R  3, t e R ,  a > 0 ,  teS2+, and v', w' given in (1.3). The result is 

L r  

t l  (x  - tv) 2 f ( t ,  x, v) dv dx  
dt Jo e3 • e3 

= --a3t f f f fR  (6 ,  v -- w)  2 Y(n( t ,  x) ,  n(t ,  x + ag))  
3 x R 3 •  

x f ( t ,  x, v) f ( t ,  x + ae, w) & dw dv dx  (3.14) 

In view of (3.9), the right-hand side of (3.14) is bounded by a constant 
depending only on fo. Therefore (3.14) implies 

([ x2f(t,x,v)dvdx<~C2 (3.15) sup 
O < . t ~ T  OJR3• 

where Cx depends on T, S~,,• X 2 f o d v d x ,  and ~R3• (1 + v 2 ) f o d v d x .  
Combining all the above, we have for initial data satisfying (3.5), 

[ [  ( l + v 2 + x Z + l l o g f l ) f d v d x < ~ C r  (3.16) sup 
O<~t<~ T J~  R3 

where CT depends on T and fo- 

822/56/I-2-12 
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Our final estimation deals with the analog of the gain-loss estimation 

for 

a 2 

h(f )  = - - f  Y(n(s, x), n(s, x - a e ) )  f(s, x, v') f(s, x - a t ,  w') 

logf(S, x, v') f(s,  x - a e ,  w') 
x ( e , v - w )  f ( s , x , v ) f ( s ,  x Z a e ,  w ) 

The inequality z(log z - l o g  y)>t z -  y, together with the assumpUon (3.9) 
on Y, implies that for h+(f)=max{h(f) ,  0} we have 

f : f f f f  h+( f )&dwdvdxds<<-c~  R ( l + v 2 ) f o d v d x  
R3• R 3 x R 3 xS2+ 3x R 3 

Next, because of (3.5) and (3.16), the left-hand side of (3.18) is bounded. 
Hence, for h - ( f ) =  max{-h ( f ) ,  0} we have 

f~  ;f;;, ,  • R3• R~ • s~+ h-  ( f  ) & dw dv dx ds <<. const( Co, Cr) 

(2.9) for the Boltzmann equation. First, we have, for each M >  1, 

E+(f )<~Ma2f f  3 2 Y ( n ( f , x ) , n ( t , x - a e ) )  
R x S +  

x f ( t ,  x, v)  f ( t ,  x - ae, w ) ( e ,  v -  w )  & dw 

1 
+ ~ c ~ ( f )  (3.17 / 

where 

~(f)  = a 2 t l  Y(n(t, x), n(t. x - as))f(t ,  x, v ') f( t ,  x -  ae, w') 
3d R 3 x S  2 

lo f( t ,  x, v ' ) f ( l , x - a e ,  ;r)) ( e ,V- -W)de  dw 
x g f ( t , x , v ) f ( t , x - a e ,  

Also, by using (35) and (37) of ref. 2, we obtain 

ffR3 • R3 f ( t , x , v ) l o g f ( t , x , v ) d v d x -  f f  R3 • e3 f o l o g f o d v d x  

f ffff R 3 x R3• R3• 82 h( f )  & dw dv dx ds (3.18) 
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Finally, since 

,I~ ffR?xR3 ~(f) dtJ dX dS 

= 2 j  o ,•215215 [ h + ( f ) + h - ( f ) J d g d w d x d x d s  

we may obtain a bound on the norm of ~(f) in L~(0, T)x R3x R 3) that 
depends only on Co and Cr. 

4. EXISTENCE T H E O R E M  

The results of the previous section, in particular estimations (3.16) and 
(3.17), place the modified Enskog equation in the framework of the 
DiPerna-Lions method developed for the Boltzmann equation. (I~ 

We have the following result. 

Theo rem.  Suppose that Y satisfies (3.9) and fo~>0 satisfies (2.4). 
Then there exists a mild solution to (1.1). 

The idea of the proof is to approximate (1.1) by considering 

~?f k + c?f k = 
& ~X Ek( fk)  (4.1) 

where E~(f)  is the modified Enskog operator with (e, v -  w) replaced by 
(e, v - w) x [cos 20(1/k + cos 2 0)-1] x W k and Y(r, cr) replaced by 

Y~(r, o9 = [-1 + ( 1 / k ) r ] - i  [1 + (1/k)GJ l Y(r, a) 

Here Wk=l  for v 2+w 2~<k and Wk=0 otherwise, and c o s 0 =  
( v - w , e ) / I v - w l .  Next, approximating f0 by convolution to obtain 
j T o E C f ( R 3 x R 3  ) and yo>~0, we show that f k  is smooth. By (3.16), one 
may show that {fk} is weakly relatively compact in LI((0, T ) x R 3 x  R3). 
Hence, by the averaging lemma of Golse et aL, ~u) we obtain that for all 
q) e L~((0, T) x R 3 x R3), {fR3 f~( t ,  x, v) ~o(t, x, v) dv }~=1 is relatively com- 
pact in LI((0, T)x R3). This means that after passing to a subsequence, if 
necessary, we have 

JR3fk( t , x ,v )  d v ~  3 f ( t , x , v )  dv a.e. in ( t , x ) e [ O , T ] x R  3 
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Therefore  

Y~( fR3 f~ ( t , x , v )  dv, f e3 f k ( t , x+ae ,  v) dr) 

k ~ '  Y ( f R 3 f ( t ' x ' v ) d v '  fR 3�9 +ae'v)dv)- 

a.e. in (t, x, ~ )e  [0, T]  x R 3 x  $2+. F r o m  this the D i P e r n a - L i o n s  line of 

a rgumen t  can be used to prove  our  theorem.  De ta i l ed  proofs  will be 
presented  in a separa te  pape r  in p repara t ion .  

In  closing, I note  tha t  the results  out l ined  here can easily be ex tended  
to the modi f ied  Enskog  equa t ion  in b o u n d e d  spat ia l  doma ins  with per iod ic  
b o u n d a r y  condi t ions .  In  this case the explici t  x 2 term in the es t imat ions  
(3.5) and  (3.16) is unnecessary.  
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