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Global Existence in L' for the Modified
Nonlinear Enskog Equation in R?

Jacek Polewczak!
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A global existence theorem with large initial data in L' is given for the modified
Enskog equation in R® The method, which is based on the existence of a
Liapunov functional (analog of the H-Boltzmann theorem), utilizes a weak
compactness argument in L' in a similar way to the DiPerna-Lions proof for
the Boltzmann equation. The existence theorem is obtained under certain condi-
tion on the behavior of the geometric factor Y. The condition on Y amounts to
the fact that the L' norm of the collision term grows linearly when the local
density tends to infinity.
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1. INTRODUCTION

In this paper I outline the proof of a global existence theorem for the
modified Enskog equation. The proof utilizes ideas exploited recently by
DiPerna and Lions to study existence of solutions to the Boltzmann equa-
tion. The DiPerna—Lions work!® is based on a new averaging lemma for
first-order hyperbolic differential operators by Golse ef @'’ and has had
a large impact on rigorous kinetic theory. Because of the importance of
these ideas, and because parallel arguments are to be used in the current
work on the Enskog equation, I present in the next section a careful sum-
mary of this averaging method applied to the Boltzmann equation, and
brief comments on its value and its weaknesses. In Section 3, I return to
the Enskog equation, and derive new a priori estimations for the modified
equation. Finally, in Section 4 I indicate that these estimations enable the
existence theory to be analyzed in the context of the averaging method.
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The Enskog equation, derived in 1921 by Enskog''? to take account
explicitly of the finite diameter of molecules, is a successful kinetic model
of a dense gas consisting of hard spheres. A modified Enskog equation can
be derived from the BBGKY hierarchy by computing the reduced
N-particle distribution function from a special grand canonical formalism
and arriving at a closure relation for the two-particle distribution function
(see Resibois'"** and the bibliography in ref. 3). The result is

Z+vL=E(f) (1.1)

where (¢, x, v) is the one-particle distribution function with r 20, x, ve R,
and the collision operator E(f) defined by E(f)=E*(f)— E~(f) with

E*(1)=d? H Y(n(t, x), n(t, x —ag)) f(1, x, v')

R¥x SZJr

x f(t, x —ae, w){ e, v—w) dedw (1.2a)

E-(fy=a[[ | You(t, %), nlt, x +ae)) fir, %, 0)
x f(t, x+ ag, w){e, v —w) de dw (1.2b)

Here, a denotes the hard sphere diameter, ¢, -> is the inner product in
R, ceS2={ceR’|g|=1, (v—w, &) >0}, and the velocities after the
collision, v’, w', are given by

v=v—ele, v—w), w=w+ele,v—w) (1.3)

The function n(z, x) = f = (¢, x, v) dv is the local density of the gas, and the
geometric factor Y is a function of the local density at x and x + age. One
notes that in the original Enskog equation Y depends only on the density
at the point of contact, i.e., at the point x =+ 1ae.

An essential differences between the modified equation and the
original equation is that for the modified equation there is an analog of the
Boltzmann H-theorem. Indeed, Resibois showed'®' that H(t) given by

x ”

H(t)= 3. | dI'" py(1)log[N! pn(1)] (1.4)

N=0

is nonincreasing in >0, where p,(¢) is the approximate N-particle
distribution function,® and that (at least formally) the modified Enskog
equation drives the gas confined in a box with periodic boundary condi-
tions toward the absolute Maxwellian.
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The function H(¢) given in (1.4) can be rewritten in the form (ref. 2,
p. 600)

H(t):”f(t, x, v) log f(t, x, v) dv dx + H'(1) (1.5)

where f(z, x, v) is the solution to (1.1), and the potential part H*(¢) is given
in terms of Resibois’ grand canonical formalism, but, unfortunately, not
explicitly in terms of f(z, x, v) and Y. I show in Section 2 that this potential
difficulty in utilizing the H-function can be overcome.

I end this section with a brief review of known existence theorems for
the original or modified Enskog equation (see ref. 3 for a more detailed
review). The first local in time existence theorem was obtained by
Lachowicz. A global in time existence theorem was obtained by Toscani
and Bellomo'® in the case of a perturbation of the vacuum. I showed'®
that the solution obtained in ref. 5 is actually a classical solution to (1.1)
if the initial datum is smooth. Furthermore, the asymptotic behavior of
solutions was obtained in ref. 6. All of the above results deal with the
original Enskog equation, but with easy modifications can be extended to
the modified Enskog equation.

The quoted results fall in either of two categories: small initial data or
local in time existence results. For large initial data, Cercignani!”’ obtained
global in time L' solutions in the case of one space dimension and Y= 1.
Arkeryd'® extended Cercignani’s result to two space dimensions using a
weak compactness argument in L', however, with the range of integration
with respect to & extended to the whole sphere S? together with the
assumption that Y= 1. It is worth noting that this alteration in the range
of integration has a significant effect on the dynamics of the Enskog equa-
tion. In fact, the original Enskog equation and the modified equation, with
integration over S?2, distinguish between forward and backward (time-
reversed) collisions, while the Boltzmann equation and the alteration
above, with integration over S?, are symmetric under forward and back-
ward collisions. Recently, Arkeryd® has obtained global existence for
Y=1 and the assumption of bounded velocities. More precisely, he
replaced (e, v—w) in (1.2) by (&, v—w) W,, where W,=11if v* + w> <4/
and W,=0 otherwise.

In this paper, the proof of a global existence theorem is based on the
fact that one can find a Liapunov functional to (1.1) if ¥(-,-) is a sym-
metric function of two variables. To utilize the Liapunov functional further,
we need an additional assumption on the behavior of ¥ when n(s, x) tends
to infinity [see (3.9)]. This condition implies that the L' norm of the colli-
sion term E(f) grows linearly when n(z, x) tends to infinity. We want to
point out that in one space dimension condition (3.9) is superfluous, and
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the only additional assumption that is needed (except, of course, for
the symmetry) is the boundedness of Y. This observation generalizes
Cercignani’s result!”’; indeed, he assumed that Y =1, which is symmetric
and bounded.

2. SKETCH OF THE DIPERNA-LIONS RESULT

Consider the Cauchy problem for the Boltzmann equation

s, af

S =0() f0.x0)=folxv) 1)

where xe R?, ve R®, and Q(f) is the Boltzmann collision operator. Q(f)
can be written in the form Q(f)=Q*(f)— 0~ (f), where

0 (N=] | Sltx ) Sl % w) BO, v —w) de dw

0 (N=[[ | (50 f(t.x, ) BO, 0 —w) de dw

Here v and w’ are given by Eq. (1.3). The angle 8¢ [0, n/2] is defined by
cos B=<v—w,e)/lv—w|, and B(6,v—w) is the scattering kernel with
the usual angular cutoff. For inverse power potentials, Z(r)=r"",
BB, v—w)=5b(0)|v—w|* " with s>2. For the hard spheres model,
BB, v—w)=|v—w| cos @ =<v—w,¢). The DiPerna—Lions result to be
outlined here will cover all soft and hard potentials; in fact, it will work for
all B(0, v—w)=b(60)}v—w|* with —3 <2 <2 and {52 b(6) de < c0. We say
that f is a mild solution to (2.1) if Q*(f)(z, x, v)e L(0, T) ae. in (v, x) €
R*x R* and

(L, x,0)— f7 (s, x,v) JQ(f (1, x,v) dt

for any O <s <1< T with f#(z, x, v) = f(, x + tv, v).
The Boltzmann collision operator Q possesses the following two
fundamental properties. For € C(R® x R?) and f e Cy(R® x R?) we have

Jrena=ff | Dot =i ) =g w))

x [f(x, v") f(x, w')— flx, v) fix, w)] B(8, v—w) de dw dv
(2.2)
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and for 0< fe Cy(R? x R?) we have

f3Q(f)logfdv<0 (2.3)

YR

As a result of (2.2) and (2.3) we may conclude that if f(z, x, v) is a smooth
and nonnegative solution to (2.1) with a nonnegative initial value f,
satisfying

” (1+ 02+ X2+ |log fo]) fodv dx = Co < o0 (2.4)
R3Ix R3
then
sup ([ (1ot flogfl)fdvdx<C, (2.5)
0<r<T ' RIxR}

where C; depends only on 7 and C,.
Now, let Q, denote a suitable approximation of Q (defined later) for
which (2.2) and (2.3) are satisfied and such that the initial value problem

Lo v Dem0f 105 0= Sl ) (26)
t ox

has a nonnegative solution on [0, T'], 7>0. Then (2.5) and the Dunford-
Pettis theorem"® imply that {f,} is relatively weakly compact in
LY(0, T) x R* x R%). Without loss of generality we may assume that f, —
weakly in L', where 0 < f'e L'. The idea, of course, is to find Q, for which
(2.6) can be solved for each n > 1 and such that f satisfies the Boltzmann
equation (2.1) in some specified sense.

One should point out that the solution of a sequence of approximate
initial value problems and the convergence of the approximate solutions is
a stage which has been reached by many authors. Arkeryd"'* solved (2.6)
for some truncated version of Q. However, he was unable to show that the
weak limit f of a sequence f, satisfies the Boltzmann equation. The authors
in refs. 15 and 16 replaced v 6/0x by its finite difference approximation and
also solved the simplified problem. As in ref. 14, they were unable to pas
with the limit in the Eq. (2.1). A stumbling block in these attempts was
that Q is not weakly continuous in L'(R?x R*), and, in fact, is even dif-
ficult to define in a reasonable way in L'(R®x R?). However, Arkeryd'!”
did use a weak compactness argument for the space-independent problem.
In this case the collision operator is weakly sequentially continuous, ie.,
Q(f,) — Q(f) weakly in L'(R?) if f, - f weakly in L'(R?), and therefore
f satisfies the homogeneous Boltzmann equation.
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The success of DiPerna and Lions relies on two new arguments
applied to the Boltzmann equation. The first deals with the notion of a
so-called renormalized solution. We say that fe C([0, T]x L' (R’ x R?*))
is a renormalized solution to (2.1) if

~l—Q (e L((0, T)x Bgx Bg)

1+f
for any R>0 and
2 Jog(t 2 log(1 4+ f)=—— f 2.7
5, oe(1+ /) o3 -log(1+/) = —.0(/) (27)

in 2'((0, o0) x R*x R*). DiPerna and Lions showed that f is a renor-
malized solution to (2.1) if and only if it is a mild solution and
Q* (/)1 +f) €L,

The second concept is a new compactness argument due to Golse
et al,''V which applies to general transport equations. Suppose that
f,e LY0, T)x R*x R*) and g,e L, ((0, T) x R® x R?) satisfy

ean an
1Yy, (28)

in 2'((0, T)x R*x R*). If we know that for each compact set K of
(0, T) x R® x R the sequences {f,} and {g,} are relatively weakly compact
in L'((0, T) x R* x R*) and L'(K), respectively, then the averaging lemma
asserts that for all @eL*((0,T)xR’xR’) the set {{pof,dv}=
{{roT, 'g,dv} is relatively compact in L'((0, T) x R*). In other words,
the velocity-averaged operator T, ' behaves in a similar way to the inverse
of an elliptic operator. We recall that T, ' may be singular only on the set
of the characteristic direction. Velocity averaging compensates for the lack
of regularity in the characteristic direction of the hyperbolic operator.

In view of (2.7), in order to utilize the above compactness argument
we need weak compactness of {Q(f,)/(1+ f,)} in L'((0, T) x R> x By) for
all R>0, where By={ve R’: |v|<R}. Since the weak compactness of
{Q~1/(1+1,)} follows in a relatively simple way, we need to show the
weak compactness of {Q ™ f,/(1 + f,)}. This is possible due to the following
new estimation of the gain term Q% provided by DiPerna and Lions:

QSusS MO fut o7 ) (29)
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for all M > 1, where

=[] Ao [t x W)= file 5 0) filt % w)]

fn(t7 X, U’)fn(ta X, W,)
Sty x, 0) £, 0, w)

In view of (2.2) and (2.3), we have e(f,) =0, and since we also have the
entropy identity

x B(6, v—w)log de dw

d

;,;ﬂmmfn log £, dvdx%ﬂ ef)dvdx=0  (2.10)

R3x R3

we see that {e(f,)} is bounded in L'((0, T) x R*> x R?) uniformly in n>1.
We are now in a position to summarize the main points of the
DiPerna-Lions proof. We approximate Q by its truncated version

1
T4 (Un) [ f, do

an}’i

HR3 P [fn(x, 0") £, w')— frx, v) filx, w)] B.(6, v—w) de dw

where

B(0,v—w)=[cos” 8(1/n+cos®0) '] xinf{1, jv—w|""} x B(6, v —w)

if ¥>+w’<n, and O otherwise. For such Q, the problem (2.6} can be
solved uniquely on [0, 7] for any 7>0. Indeed, Q, is Lipschitz in
L'((0, T) x R*x R*) with Lipschitz constant depending only on #. Further-
more, f, Is a smooth, nonnegative solution to (2.6). As before, (2.2) and
(2.3) imply that, by passing to a subsequence if necessary, f, — f weakly in
L'((0, T) x R*x R*®) and, by the averaging lemma,

J" qof,,dvﬁfj(pfdv strongly in  L'((0, T)x R>)  (2.11)
R} R

for all pe L=((0, T)x R*x R?).
Next, using (2.11), one may show that for each ¢ e L*((0, T)x
R*x R’) with compact support,

| oUedi—| o(f)pds (2.12)
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in measure on (0, 7) x Bg. Properties (2.11) and (2.12) are enough to show
that f is a mild solution to (2.1).

The procedure for solving (2.1) may be analyzed as follows. The
Boltzmann equation has naturally built into its structure the weak com-
pactness argument [properties (2.2) and (2.3)]. The question is whether
the weak limit of a sequence of solutions is again a solution. In spite of the
fact that Q is not weakly continuous in L'(R®x R?), the answer to this
question is affirmative. Indeed, the weak limit of a sequence of classical
solutions is a renormalized, or equivalently, mild solution to (2.1). In other
words, the set of renormalized solutions is closed in the weak topology of
LY(0, Tyx R*>x R).

The DiPerna—Lions paper has had great impact in part because the
methods are applicable to a variety of problems in kinetic theory, and also
because it answers (affirmatively) for the first time the question of whether
the full nonlinear Boltzmann equation has solutions, valid for all time,
when the initial value is far from the equilibrium solution (the
Maxwellian). This has been an open probiem not just from a rigorous
point of view. Since derivations of the Boltzmann equation lean—at least
implicity—on the assumption that the gas is not too far from its equi-
librium configuration, there has not been even good physical intuition as
to whether global solutions should exist for initial configurations arbitrarily
far from equilibrium.

On the other hand, weak compactness arguments necessarily suffer
from a substantial drawback. No information is offered as to the unique-
ness of the derived solution. And, indeed, to date, no ideas have been
offered to decide if the sequence {f,} obtained by DiPerna and Lions has
a unique limit point, and, if so, if the limit is the unique solution of the
Boltzmann equation.

3. BASIC IDENTITIES AND A PRIORI ESTIMATIONS
FOR THE MODIFIED ENSKOG EQUATION

In order to apply averaging techniques to the study of the modified
Enskog equation, it is first necessary to obtain a number of a priori
estimates for its solution.

First, let us note that the factor Y(n(¢, x), n(tf, x—ae)), which in
general is a functional of the local density at x and x — ae, arises from the
Resibois’ formalism as a symmetric functional of n(¢, x) and n(¢, x — ae). In
fact, this property is crucial in the derivation of the H-theorem, and is
necessary, in any case, to obtain conservation laws. We shall assume this
symmetry throughout, namely, Y(r,0)=7Y(s,17), 0,720 The first
property of E(f) we indicate is an analog of corresponding identities



Modified Nonlinear Enskog Equation in R3 167

for the Boltzmann collision operator. For ¢ eC*(R’xR?) and
feCo(R*x R?),

UR LV 0) E(f) do dx

a?.

:?“”R&R&R&SZ [l//(x, Ul) + lﬁ(x+a3, w/)

—(x, v) —yr(x+ae, w)] x fix, v) f(x+aeg, w) Y(n(x),
m(x+ag)){e, v—w) dedw dv dx 3.1)

While Resibois must have been aware of this identity, it was never stated
explicitly [see, however, the identities (35) and (37) in ref. 2, where ¥ 1s
replaced by log f(x, v)].

For f a nonnegative solution to (1.1), and ignoring at this stage any
integrability conditions, we define

r(z):fL (e, x, v)log (1, x, v) do dx—jll(s)ds (3.2)
where

1) =%a2 JWR o LX) YO0t )t )

—f(t, x+ae, w) Y(n(t, x), n(t, x + ag)) ]
x f(t, x,v){e, v—w) de dw dv dx

Now, multiplying (1.1) by 1 +log f and integrating over (x, v)e R>x R?,
we have

dar

Tff,w E(f)log f dv dx — I(1) (3.3)

Using the identities (35) and (37) of ref. 2 together with the inequality
y(log y—logz)= y—z for y, z>0, we obtain

dr
—<0 .
7 (3.4)

The inequality (3.4) shows that 7(¢) is a Liapunov functional for (1.1). 17(¢)
displays the irreversibility of the system governed by the modified Enskog
equation. It also can be considered as the analog of the H-function for
(1.1). Note that I" is defined explicitly in terms of f{t, x, v) and Y, in con-
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trast to the H-function (1.4) [or (1.5)] obtained by Resibois.*) Further-
more, in the dilute gas limit, when the modified Enskog equation becomes
the Boltzmann equation, the function 7I(z) reduces to the Boltzmann
H-function.

In order to obtain a priori estimations on the solution f(f, x, v) to
(1.1), let us assume throughout this section that f is a smooth nonnegative
solution with initial value fy(x, v) satisfying

”RB (1074 Jlog fo)) fo do dx < Co < 0 (3.5)

Our first a priori estimations are the following conservation laws, which
follow from (3.1) with ¢ =1, v, v*:

[, sexoyda=[]  fxododr (3.6)
”Ra . of(, x, v) do dx = H tfolx, v) dv dx (3.7)
Hm . v f(t, x, v) do dx = H vfo(x, v) dv dx (3.8)

So far the only property of Y employed has been the symmetry Y(z, o) =
Y(o,1), 1,0 20.

In "order to utilize (3.2) and (3.4) further, we need an additional
assumption on Y:

sup t¥(t,0)=M,< w0 (3.9)

7,020

Now it is an easy exercise to show that (3.9) together with the symmetry
of Y imply

sup |1(0)| <4na®My || ) flx o) deds (310)

01T x R3

In view of (3.10), one immediately sees from (3.2) and (3.4) that

sup ”sz Raf log f dv dx

O<1g7T

<H folog fodvdx+(1+ T)dna* My
R3x R?

xﬂ (L 02) folx, v) dv (3.11)
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We further notice that in the case of one space dimension one can obtain
estimation (3.10), and hence (3.11), without the assumption (3.9). Indeed,
using the same technique as in the lemma of ref. 7, p. 216, one obtains

sup |1(1)] < 16mal sup ¥(r, 0)] m (1+0%) folx, v) dv de ~C,

0T 7,020

(3.12)
As before, (3.12) implies

sup ”Rlxmflogfdv dx<ﬂ .

0T R? %

folog fodvdx+ (1+T)C, (3.13)
R3

An important physical case when (3.9) holds is provided by Y with com-
pact support, support {¥}<[0,n.]x[0,n.]. Since the diameter of the
hard spheres is greater than zero, n, can be interpreted as “the density at
which the spheres become strictly packed” (see ref. 7, p. 214).

Another estimation can be obtained by multiplying (1.1) by (x — )3,
integrating by parts over x & R>, and using (3.1) along with the equality

(x—10' )+ (x+ae—tw')>=(x—w)*+ (x+ae— tw)*> —2atle, v —w)
for x,v, we R*, te R, a>0, eeS>, and v, w' given in (1.3). The result is

d

di HR;XR} (x— ) f(t, x, v) dv dx

3 w\2
= —q t”ﬁmxmmxm (e, v—w)” Y(n(t, x), n{t, x + a&))
xf(t, x,v) f(t, x + ag, w) de dw dv dx (3.14)
In view of (3.9), the right-hand side of (3.14) is bounded by a constant
depending only on f,. Therefore (3.14) implies

sup H X2 f(1, %, 0) dv dx < C, (3.15)
RIx R3

OgrsT

where C, depends on T, [, g3 X*fo dv dx, and [ g,z (1 +07) fo dv dx.
Combining all the above, we have for initial data satisfying (3.5),

sup ” (1402 +x2+|log f]) fdvdx < Cy (3.16)
0t TV R RS

where C; depends on T and f,.

822/56/1-2-12
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Our final estimation deals with the analog of the gain—loss estimation
(2.9) for the Boltzmann equation. First, we have, for each M > 1,

E*(f) < Md> ﬂ Y(n(f, x), n(t, x — ae))
R3><S%r
x f{t, x,v) f(t, x —ag, w){e, v—w) de dw
1
tiogar ™) (3.17)
where
a(f)=a* H Y(n(t, x), n(t, x —ae)) f(t, x,v') f(t, x—ae, w')

R3><S%+

St x, v") f(1, x—ag, w')
& S, x,v) f(t, x —as, w)

Also, by using (35) and (37) of ref. 2, we obtain

x |1o {e,v—w)dedw

[, fexoloefuxodd— [ flogfrdvds

RIx R}
:jo jjﬂmmmmz h(f) de dw do dx ds (3.18)

for

2
r(f)= —% Y(n(s, x), n(s, x — ae)} f(s, x, v') f(s, x — ag, w’)

f(s, x, 0") f(s, x —ag, w')
f(s, x, v) f(s, x — ae, w)

The inequality z(log z—log y) =z — y, together with the assumption (3.9)
on Y, implies that for 2™ (f) =max{k(f), 0} we have

x {g,v—w) log

fTﬂfRz s h+(f)d5dwdvdxds<const-f (1+0?) fodvdx
0 x ROx ROx ST

RIx R}

Next, because of (3.5) and (3.16), the left-hand side of (3.18) is bounded.
Hence, for h~(f)=max{~h(f), 0} we have

LT Hﬂmxklxmxsl h™(f) de dw dv dx ds < const(C,, Cr)
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Finally, since

[T“ 3 3oz(f)dv dx ds

=2J"OTMJR3XR3XRJXSi [A*(f)+h~(f)] de dw dx dx ds

we may obtain a bound on the norm of «(f) in L'(0, T) x R*x R?) that
depends only on C, and C.

4. EXISTENCE THEOREM

The results of the previous section, in particular estimations (3.16) and
(3.17), place the modified Enskog equation in the framework of the
DiPerna—Lions method developed for the Boltzmann equation.'”)

We have the following result.

Theorem. Suppose that Y satisfies (3.9) and f, =0 satisfies (2.4).
Then there exists a mild solution to (1.1).

The idea of the proof is to approximate (1.1) by considering

orc of* «
——+=—=F 4.1
=B (4.1)
where E,(f) is the modified Enskog operator with (¢, v —w) replaced by
(e, v—w) x [cos? O(1/k +cos?0) '] x W, and Y(z, o) replaced by

Yi(r,0)=[1+ (k)] ' [1+(l/k)o] " Y(z, 0)

Here W,=1 for v*+w?<k and W,=0 otherwise, and cosf=
{v—w,e>/lv—w|. Next, approximating f, by convolution to obtain
Foe CE(R*x R®) and f, =0, we show that f* is smooth. By (3.16), one
may show that {f*} is weakly relatively compact in L'((0, T) x R*> x R?).
Hence, by the averaging lemma of Golse et al.,'*!’ we obtain that for all
@eL™((0, T)x R’ x R), {{p f(1, x, v) @(t, x, v) dv } 7, is relatively com-
pact in L'((0, T) x R*). This means that after passing to a subsequence, if
necessary, we have

[ fk(z,x,v)du_k:—»j flt,x,v)dv ae in (4 x)e[0, T]x R?

v R3
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Therefore

Y, (J 3f"(t, X, v) dv, J 3fk(t, X+ ag, v) dv)

k- o0

—_— <j f(t, x, v) db, f f(t, x + ag, v) dv)
R R?
ae. in (1, x,¢)e[0, T]x R*x S?%. From this the DiPerna-Lions line of
argument can be used to prove our theorem. Detailed proofs will be
presented in a separate paper in preparation.
In closing, I note that the results outlined here can easily be extended
to the modified Enskog equation in bounded spatial domains with periodic

boundary conditions. In this case the explicit x? term in the estimations
(3.5) and (3.16) is unnecessary.
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